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Short-time dynamics of colloidal particles confined between two walls

Jesu´s Santana-Solano and Jose´ Luis Arauz-Lara
Instituto de Fı´sica ‘‘Manuel Sandoval Vallarta,’’ Universidad Auto´noma de San Luis Potosı´, Alvaro Obrego´n 64,

78000 San Luis Potosı´, San Luis Potosı´, Mexico
~Received 7 June 2001; published 17 January 2002!

The short-time dynamics of colloidal particles in a quasi-two-dimensional geometry is studied by digital
video microscopy. The particles~polystyrene spheres! are suspended in water and confined between two
parallel glass plates, forming an effective two-dimensional system. The~effective! two-dimensional van Hove
functionG(r ,t) and its self and distinct part are measured with a time resolution of 1/30 s. We found that the
general behavior of these time-correlation functions~and their Fourier transforms! is quite similar to that of
their three-dimensional counterparts. The effects of the strong hydrodynamic coupling of the particles motion
to the walls and that due to the hydrodynamic interactions between particles are contained in the~effective!
hydrodynamic functionH(k) obtained from the initial slope ofF(k,t) @the Fourier transform ofG(r ,t)]. We
found thatH(k), as a function of the wave vectork and particle concentration, exhibits a similar qualitative
behavior to the hydrodynamic function in homogeneous three-dimensional suspensions of hard spheres. We
also found in our systems that the particle fluctuations relax only by self-diffusion for wave vectors where the
static structure factorS(k)51. This result is important for measurements of self-diffusion dynamics in three-
dimensional systems by light scattering techniques.

DOI: 10.1103/PhysRevE.65.021406 PACS number~s!: 82.70.Dd, 05.40.2a
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I. INTRODUCTION

The dynamics of confined colloidal particles is a subj
of wide interest and of great scientific and technological r
evance, which is increasingly attracting the attention of ma
researchers@1–10#. The recent interest is partly due to th
availability of direct imaging techniques that allow one
study the particles dynamics in real space in great de
Colloidal dynamics has been extensively studied for m
than two decades in the case of homogeneous th
dimensional~3D! suspensions~of charged and hard spheres!.
There, theory, experiments, and computer simulations h
led to an understanding of many aspects of the dynamic
cesses in the bulk@11–17#. However, the description of thos
processes when they occur under confinement, is still in a
less developed stage owing to the considerable additi
complexity introduced by the confining conditions. In th
case, the dynamic properties are not only determined by
direct ~DI! and hydrodynamic~HI! interparticle interactions
the motion of the particles is also coupled to the confin
walls by DI and HI. This makes the description considera
more complicated than in 3D. The more striking effects a
perhaps, those arising from strong hydrodynamic coupling
the particles with the walls. For instance, the translation~and
rotation! friction coefficient of an isolated particle~a scalar
quantity in the bulk! moving close to a single plane wa
becomes a tensor, with its parallel and perpendicular com
nents diverging as the particle approaches the wall’s sur
@18,19#. The presence of a second~parallel! wall complicates
significantly the description. In this case the contributio
from an infinite number of reflections between the two wa
of the hydrodynamic flux of the suspending fluid have to
incorporated@20#. For an isolated pair of particles close to
single wall, a detailed study of the relative particles’ moti
has shown the strong effect of the hydrodynamic interacti
with the wall@7,8#. These examples illustrate the determina
1063-651X/2002/65~2!/021406~8!/$20.00 65 0214
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role of the long-ranged hydrodynamic interactions as wel
the complexity involved in their description even in simp
cases. Thus, the interesting and challenging problem at h
is the study of the dynamics of a finite number of colloid
particles, either close to a single wall or confined betwe
two of them, where particle-particle and particle-wall~s! in-
teractions~direct and hydrodynamic! are present.

The aim of the present work is, precisely, the study of
effects of confinement on the dynamic processes in collo
suspensions at finite concentrations, and in particular the
fects of the hydrodynamic interactions. We consider the s
cific case of quasi-two-dimensional systems, i.e., colloi
suspensions highly confined between two parallel wa
Here we are mainly interested in the effects of HI both b
tween particles and between particles and the walls. Th
we study concentrated systems where such effects are st
but we focus only on the short-time regime, where the effe
of the HI can be decoupled from those of the DI. In a rec
work @10# we addressed this problem and presented meas
ments of effective two-dimensional quantities describing
effects of the HI. Here we study essentially the same pr
lem, but we provide a more extensive account of the exp
mental details and an extended presentation of the phys
quantities describing short-time dynamics, those measure
our experiment. We confine colloidal particles~diameters
52.05 mm, suspended in water! between two parallel plate
separated a distance (h52.92 mm) comparable to the par
ticles size. The presence of the plates forces the particle
form a single layer in the midplane parallel to the wal
Under these conditions, the particles motion occurs~mainly!
along that plane since the motion in the perpendicular dir
tion is severely restricted. We use optical microscopy to
serve and record the in-plane dynamics of the particles
real space. Thus, in our experiment we define and mea
experimentally accessible quantities as if the systems w
strictly two-dimensional~2D!. However, although the motion
©2002 The American Physical Society06-1
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of the colloidal particles is essentially two dimensional, t
motion of the suspending fluid is not restricted to 2D. Th
the measured quantities, defined analogously to those
scribing the dynamic properties in bulk suspensions, are
reality effective 2D quantities containing the effects of t
confinement that we want to study. The formal derivation
a theory describing the dynamic properties of our experim
tal system would have to incorporate a number of rat
complex effects, such as the~direct and hydrodynamic! in-
teractions of the particles, not only among themselves,
also with the confining walls. Thus, its derivation will b
considerably more complicated than in 3D. Instead of pur
ing such derivation here, we adopted a practical approac
defining and measuring effective 2D quantities as discus
in the following sections. Interestingly, we find that the pro
erties thus defined and measured exhibit a qualitative be
ior strikingly similar to their 3D counterparts. This indicate
that, in spite of all the complexity involved, the descriptio
of the dynamics of colloidal particles in quasi-two
dimensional geometries can be cast in a fashion formally
more complicated than in the case of 3D bulk suspensio
Clearly, this observation should serve as an important gu
line for the future development of the theory of the dynam
of confined suspensions. A computer simulation study, of
HI effects on the dynamic properties of colloidal particl
confined in a similar geometry as in our experiment, h
been reported by Pesche´ and Nägele @9#. In that work, the
authors use Stokesian dynamics to account for the
particle-particle, and particle wall, in systems of charged a
neutral particles. Although that work is similar to ours, t
authors study different systems and conditions. Thus, a d
quantitative comparison between their computer simula
results and our experimental data is~unfortunately! not pos-
sible at this stage. In Sec. II we give a more detailed acco
of the experimental methods. In Sec. III we present and
cuss our results, and in Sec. IV we present our conclusi

II. METHODS

A. System preparation

Aqueous suspensions of polystyrene spheres of diam
s52.0563% mm and s252.9263% mm ~Duke Scien-
tific! were extensively dialyzed~dialysis bags of 50 000 mo
lecular weight cutoff! against nanopure water to elimina
the surfactants in the original batches. In a clean atmosp
of nitrogen gas, the suspension of small particles is mi
with a small amount of large particles. A little volume of th
mixture
('1 m l), is confined between two carefully cleaned gla
plates~a slide and a cover slip!, which are uniformly pressed
one against the other until the separationh between the
plates coincides withs2. As a result, the large particles a
fixed in a disordered configuration across the sample, ser
as spacers between the plates. The system is then sealed
epoxy resin~Epo-Tek 302!, and the species of small mobil
particles is allowed to equilibrate in this confined geome
for a few days at room temperature (27.760.1 °C). Under
these conditions, the motion along the directionz, perpen-
dicular to the plates, is almost suppressed, and the main
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tion of the particles is along the plane (x,y) parallel to the
walls. Thus, the mobile species constitute an effective tw
dimensional colloidal suspension, homogeneous along
plane of motion. Systems with different concentrations
mobile particles were prepared following this procedure a
they remained stable for several months. Figure 1 shows
image of areaa576356 mm2 of a sample with mobile par-
ticles area fractionfa[pn* /450.38, n* [ns2 is the re-
duced concentration, andn is the average number of particle
in the areaa. The image was taken using an optical micr
scope with a 403 objective. In this figure only the mobile
particles can be seen, but fixed spacer particles are scat
around the area of observation. We obtained identical res
for the physical quantities of interest from measurements
different sites of the system.

B. Digital video microscopy

The systems are observed in real space using an op
microscope with a 403 objective. The motion of the par
ticles is recorded using a charge-coupled device~CCD! cam-
era coupled to a videotape recorder. Images are digitized~see
Fig. 1! using a frame grabber with a resolution of 64
3480 pixels. With our setup we measures516.8 pixels.
The position~i.e., thex andy coordinates! of every particle
in the field of view is determined from the digitized imag
using the method devised by Crocker and Grier@21#, which
allows us to locate the spheres centers with a precision of
pixel (;0.01s). The particles motion in our system is qui
slow; they move on average only a small fraction ofs be-
tween frames. Thus, their 2D trajectories can be easily rec
structed, with a time resolution of 1/30 s, from their positio
at consecutive frames. From the trajectories, we obtain v
ous effective 2D physical quantities describing self-dynam
and collective dynamics, as we explain below. All the resu
presented here were obtained from the analysis of at l
104 video frames in runs of 120 consecutive frames. Figur
shows the trajectories of the particles in the system show
Fig. 1, as obtained from one run.

FIG. 1. Top view of a quasi-two-dimensional colloidal suspe
sion of area fractionfa50.38. The image is 76356 mm2 and the
particles’ diameters52.05 mm.
6-2
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SHORT-TIME DYNAMICS OF COLLOIDAL PARTICLES . . . PHYSICAL REVIEW E 65 021406
III. RESULTS

A. Static structure

Before discussing the dynamic properties, let us pres
measurements of an important equilibrium property of
system which depends only on the direct interactio
namely, the static structure. In real space it is character
by the radial distribution function; the conditional probabili
of finding a particle a distancer far away from a centra
particle. In our quasi-two-dimensional systems we meas
the in-plane radial distribution functiong(r ), with r being
the projection of the distance between particles’ cen
along the plane (x,y). Figure 3 shows the measuredg(r ) for
four different particle concentrations~dots with dashed line!.
As it is seen here, the structure increases as the concentr

FIG. 2. Trajectories of the particles in Fig. 1 obtained from 1
consecutive video frames.

FIG. 3. Measured in-plane radial distribution functiong(r ) of
quasi-two-dimensional colloidal suspensions for four different a
fractions~dots with dashed line!. The solid lines are the radial dis
tribution functions of strictly 2D systems of hard disks at the sa
area fractions obtained by Monte Carlo computer simulations.
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increases. For the less concentrated system studied herfa
50.23, g(r ) shows clearly one maximum, and the presen
of a minimum and a second maximum is only insinuated.
fa increases, the height of the first peak also increases
subsequent maxima and minima are developed. The pos
of the first peak is close to contact (;1.1s), meaning that
the effective direct interparticle interaction is short range
One can also see in this figure that the shape ofg(r ) re-
sembles that of a radial distribution function of a system
hard disks. In order to check this observation more quant
tively, we run a computer simulation using the Monte Ca
~MC! algorithm for strictly two-dimensional systems of ha
disks of diameters at the same area fractions of the expe
mental systems. As one can see here, the MCg(r ) ~solid
lines in Fig. 3! follow closely the experimental results wit
small deviations. Thus, according to this comparison,
dominant component of the interparticle direct interaction
the excluded volume interaction. However, the facts that
first peak of the experimentalg(r ) is not exactly at contac
and small but consistent discrepancies are observed betw
the simulated and the experimental radial distribution fu
tions are indications of the existence of an additional~small!
component in the effective particle-particle interacting pote
tial. This is an interesting and important matter in its ow
right, but is not within the main subject of the present wo
We will provide a more detailed discussion of these a
other complementary experiments in a separated report.

B. In-plane self-diffusion

The in-plane Brownian motion of individual particles
also referred to as self-diffusion, can be described in term
a simple quantity, namely, the particle’s mean squared
placementW(t) given by

W~ t !5
1

4
^@Dr ~ t !#2&, ~3.1!

whereDr (t)5r (t)2r (0) is the particle’s in-plane displace
ment at timet, and the angular brackets represent an equi
rium ensemble average. However, a more general qua
describing self-diffusion is the normalized probability dist
bution functionP(Dr ,t) of single particle displacementsDr
at time t, with W(t) being only its second moment, i.e
W(t)5 1

4 *dr (Dr )2P(Dr ,t). These quantities,P(Dr ,t) and
W(t), are determined in our experiment directly from th
particles trajectories. For homogeneous and isotropic s
tems in thermal equilibrium it should happen thatP(Dx,t)
5P(Dy,t), with P(Dx,t) and P(Dy,t) being the normal-
ized probability distribution functions of displacemen
along the directionsx and y at time t, respectively, and
P(Dr ,t)5P(Dx,t)P(Dy,t), with uDr u25Dx21Dy2. In Fig.
4 we compare results forP(Dx,t) ~open symbols! and
P(Dy,t) ~closed symbols! at different times, only for the
system withfa50.38~the results for other area fractions a
similar!. This figure shows that in the quasi-two-dimension
systems studied here the equalityP(Dx,t)5P(Dy,t) holds,
i.e., the motion of the particles along the directionx is indeed
independent and equivalent to the motion in the directiony.
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JESÚS SANTANA-SOLANO AND JOSE´ LUIS ARAUZ-LARA PHYSICAL REVIEW E 65 021406
This indicates that the systems are homogeneous and is
pic along the (x,y) plane. Then, we can write 2W(t)
5^@Dx(t)#2&5^@Dy(t)#2&. Thus, we can describe the se
diffusion properties using only eitherP(Dx,t) or P(Dy,t).
In this figure one can see that the functionsP(Dx,t) are
symmetric, centered aroundDx50. Initially they are very
narrow, and then they spread out as time increases du
self-diffusion of the particles. In isotropic systems of non
teracting particles theP(Dx,t) are Gaussian functions wit
^Dx&50 and dispersionA^Dx2(t)& @22#. For 3D colloidal
suspensions at finite concentration, the corrections to
Gaussian form introduced by the interactions between
particles are negligible andP(Dx,t) are very well approxi-
mated by Gaussian functions@23#. In the case of confined
particles, one can ask whether the in-plane particles displ
ments are also random variables with Gaussian distributi
or the effects of the walls change the qualitative behavio
the individual motion of the particles. Thus, one could che
how well the experimentalP(Dx,t) in Fig. 4 fit to Gaussian
functions. We proceed here as we did in previous pap
@3,10#. We compare the measuredP(Dx,t) with normalized
Gaussian functionsPg(Dx,t) having zero mean value an
dispersionA2W(t), i.e.,

Pg~Dx,t !5
1

A4pW~ t !
expF2

Dx2

4W~ t !G . ~3.2!

Figure 4 shows also the functionsPg(Dx,t) ~solid lines!,
constructed using the measured mean squared displace
W(t). As one can see here, the measuredP(Dx,t) coincides
with the Gaussian distribution functions in a wide range
times ~similar results are obtained for other concentration!.

FIG. 4. Probability distribution functions of single particle di
placements in the directionsx andy for different times~symbols!.
Here one can see that the motion of the particles along the per
dicular directions is symmetric, independent, and equivalent.
comparison, we show the Gaussian functions with zero mean v
and dispersionA^Dx2(t)& ~solid lines!. In this systemfa50.38, but
similar results are obtained for other area fractions.
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Thus, the individual lateral motion of the particles in o
systems is essentially a Gaussian random process chara
ized only by its first two momentŝ Dx(t)&(50) and
^@Dx(t)#2&@52W(t)#.

Figure 5 shows the measuredW(t) only for two illustra-
tive cases, a highly dilute system (fa;2.331023) and the
most concentrated system studied here (fa50.38). In the
dilute system~closed circles!, the effects of the interparticle
interactions, direct and hydrodynamic, are negligible a
W(t) contains only the effects of the particle-walls hydrod
namic interactions. The effect of the direct interaction b
tween the particles and the walls is the particles confinem
For this concentration,W(t) is shown only for short times
since reliable values ofW(t) at longer times requires th
analysis of a considerable large amount of data. The das
line in Fig. 5 isW(t)5D0t, corresponding to free diffusion
of the same particles in 3D, withD05kT/3phs being the
free diffusion coefficient. Comparison of the initial slope
W(t) in the dilute systemDs58.28310210 cm2/s, with
D052.5931029 cm2/s, shows that the hydrodynamic cou
pling of the particles with the walls has a strong effect
ready on the motion of isolated particles (Ds is only about
30% of D0). At finite concentrations, in addition to the e
fects from the walls, the individual motion of the particles
also affected by the interparticle interactions, leading to
further reduction of the particles mobility, i.e., to lower va
ues forW(t) ~open circles!. In the bulk of homogeneous 3D
systems, the mean squared displacement increases lin
with time at short times@i.e., W(t)5Ds

st] and it bends down
at later times due to the effect of the direct interparticle
teractions. The quantityDs

s[ limt→0W(t)/t is referred to as
the short-time self-diffusion coefficient and its value d
creases~from Ds

s5D0 at infinite dilution! as the particle con-
centration increases due to the interparticle hydrodyna
interactions. The same features are observed in the qu
two-dimensional systems. The solid line in Fig. 5 is a strai

n-
r

ue

FIG. 5. Effective 2D mean squared displacementW(t). Close
(fa52.331023) and open (fa50.38) circles are experimenta
data from video microscopy. The solid line is the initial linear b
havior of W(t) in the system withfa50.38, and the dashed lin
corresponds to free diffusion in 3D.
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SHORT-TIME DYNAMICS OF COLLOIDAL PARTICLES . . . PHYSICAL REVIEW E 65 021406
line with its slope (Ds
s) determined by a linear regressio

using only the five initial experimental data points~0.166 s!
of W(t). As it is seen here, the linear regime spans up
about 0.5 s. For timest.0.5 s,W(t) deviates from the linea
behavior due to the direct interactions between neighbo
particles. Thus, at finite particle concentrations, the ini
slopeDs

s contains the effects of both the particle-particle a
particle-walls hydrodynamic interactions. As it is seen he
the strongest effect comes from the hydrodynamic inter
tions with the walls since the difference betweenDs

s andDs

is smaller than the difference betweenDs andD0.

C. In-plane collective dynamics: real space

In this section we present results for the in-plane coll
tive dynamics. As mention above, we shall be mainly int
ested in studying the effects of the hydrodynamic inter
tions. Thus, we focus on the short-time regime where th
effects can be decoupled from the effects of the direct in
actions. The general quantity measured in our experimen
the time correlation functionG(r ,t) of the 2D ~in-plane!
local particles concentrationn(r ,t) at the~in-plane! position
r and timet, i.e., G(r ,t)[(1/N)^n(r 8,t50)n(r 9,t)& with r
[ur 92r 8u, and the angular brackets representing an equ
rium ensemble average. The local concentration is written
n(r ,t)5( j 51

N d„r2r j (t)…, with N being the number of par
ticles in the system andr j (t) the ~in-plane! position of the
j-particle at timet. Thus,

G~r ,t !5K (
j ,l 51

N

d„r2r j~ t !1r l~0!…L . ~3.3!

The correlation functionG(r ,t), which describes the collec
tive motion of the particles, can be split into two terms, t
self-part and the distinct part,Gs(r ,t) and Gd(r ,t), respec-
tively. The former containing the termsj 5 l and the latter the
terms j Þ l , i.e.,

G~r ,t !5Gs~r ,t !1Gd~r ,t !, ~3.4!

with

Gs~r ,t !5^d„r2r1~ t !1r1~0!…& ~3.5!

and

Gd~r ,t !5
1

N K (
j Þ l

N

d„r2r j~ t !1r l~0!…L . ~3.6!

The quantityGs(r ,t) describes the process of self-diffusio
i.e., the self-correlation of individual particles, andGd(r ,t)
describes the time correlation between different partic
These correlation functions,G(r ,t) and their self-part and
distinct parts, are defined and measured in our experimen
if the systems were 2D. However, one should keep in m
that in reality they are effective two-dimensional quantit
containing the effects of the confinement on the dynam
processes of the colloidal particles. We will refer here
G(r ,t) as the effective 2D van Hove function since the de
nition given above@Eq. ~3.3!# coincides with the formal ex-
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pression for the van Hove function for strictly 2D or 3
systems@where r and r j (t) are 2D or 3D vectors, respec
tively#. It should be clear, however, that Eq.~3.3! is not the
expression for the actual van Hove function for quasi-tw
dimensional systems. The derivation of such an express
certainly more complex than in 2D or 3D due to the prese
of the confining walls, is not pursued here. Instead, we d
cuss the dynamic properties of the confined colloidal p
ticles in terms of the effective 2D quantities introduc
above and other quantities defined below.

Figure 6 shows the measured effective two-dimensio
van Hove functionG(r ,t) for the systems with~a! fa
50.23 and~b! 0.38. One can see here the contributions
the self-correlation and distinct-correlation functions to t
total correlation functionG(r ,t) at different times. For times
t,1 s, both components are clearly distinguishable fr
each other, and at later times they merge together combi
their relative contributions toG(r ,t). At time t50, the self-
part is a peaked function atr 50 ~data not shown!, i.e.,
Gs(r ,0)5d(r ) @see Eq.~3.5!#, and Gd(r ,0)5n* g(r ), with
g(r ) being the in-plane radial distribution function. At time
t.0, Gs(r ,t) spreads out, due to self-diffusion, following
Gaussian function with dispersionA2W(t) as shown in Fig.
7, while the initial structure of the distinct part smears dow
due to the loss of interparticle correlation as time evolves
fact, for very long times the dynamics of the particles
completely uncorrelated and the distinct part is a const
i.e., Gd(r ,t)→n* as t→`. Of particular interest is the time
at which the contributions ofGs(r ,t) and Gd(r ,t) start to
overlap. This time provides a quantitative way to define
time span of the short-time regime. In the set of~concen-
trated! systems studied here, the merging time is between
and 1 s.

D. In-plane short-time collective dynamics: reciprocal space

The dynamics of colloidal particles in 3D suspensions
usually studied in terms of the dynamic structure fac
F(k,t), which is the quantity measured in dynamic lig
scattering experiments.F(k,t) is the Fourier transform of the

FIG. 6. Measured effective two-dimensional van Hove functi
G(r ,t)/n* vs r /s, at different times, for quasi-two-dimensiona
colloidal suspensions with~a! fa50.23 and~b! 0.38.
6-5
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JESÚS SANTANA-SOLANO AND JOSE´ LUIS ARAUZ-LARA PHYSICAL REVIEW E 65 021406
3D van Hove function, i.e., it is the time correlation functio
of the fluctuations of the local particle concentration
wavelengthl52p/k. Thus, the van Hove function and th
dynamic structure factor describe the structural propertie
colloidal suspensions in the real and in the reciprocal sp
respectively. At short times, the correlation functionF(k,t)
decays as@11,13#

F~k,t !5S~k!exp@2k2Dc
S~k!t#, ~3.7!

where S(k)5F(k,t50) is the static structure factor an
Dc

S(k) is the short-time collective diffusion coefficient. Thu
the initial relaxation of thermal fluctuations in the local pa
ticle concentration is exponential, with a waveleng
dependent time constant. A very important property ofDc

S(k)
is that it can be written as the ratio of two quantities; o
@H(k)# describing the effects of the hydrodynamic intera
tions, and the other@S(k)# being an equilibrium property
that depends on the direct interactions, i.e.,Dc

S(k)
5H(k)/S(k). Thus, the initial decay ofF(k,t) measures the
effects of the HI. The functionH(k), referred to as the hy
drodynamic function, is expressed as an ensemble avera
the diffusion tensorsDl j (r

N), i.e.,

H~k!5^1/N( l , j 51
N k̂•Dl j ~rN!• k̂exp~ ik•@r l2r j # !&.

This quantity has interesting general properties. The s
part,Hs5^k̂•D11(r

N)• k̂&, is independent ofk and quantifies
the HI effects on single particle motion.Hs is the short-time
diffusion coefficient given by the initial slope of the~3D!
mean squared displacementW(t)[^@Dr (t)#2&/6, i.e., Hs

[Ds
s5 limt→0W(t)/t. Here, t→0 means the limit of shor

times within the diffusive time regime. The distinct pa
Hd(k) of H(k) ~the termslÞ j ) describes the hydrodynami
coupling between particlesl and j. This quantity is the en-

FIG. 7. MeasuredGs(r ,t) vs r ~symbols! compared with nor-
malized Gaussian functionsPg(r ,t) ~dashed lines! of width
A2W(t). In this systemfa50.38.
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semble average of a phase factor which oscillates very
idly at large values ofk. Thus,Hd(k)→0 andH(k)→Ds

s in
the large wave-vector limit.

Thus, an important advantage of describing the dyna
properties of 3D systems in the reciprocal space is that
short times, the HI and DI effects can be decoupled, with
former being measured by the initial slope of the dynam
structure factor. In our case the reciprocal space descrip
of the dynamic properties is provided in terms of the~effec-
tive! 2D dynamic structure factorF(k,t), defined here as the
Fourier transform of the measuredG(r ,t). Although F(k,t)
defined in this way is not, strictly speaking, the actual d
namic structure factor of our systems~for which a formal
expression has yet to be derived!, it should be clear that this
quantity describes the dynamic processes in the Fou
space as far asG(r ,t) provides the appropriate description
the real space.F(k,t) can also be written as the sum of tw
terms,

F~k,t !5Fs~k,t !1Fd~k,t !, ~3.8!

with Fs(k,t) and Fd(k,t) being the Fourier transforms o
Gs(r ,t) andGd(r ,t), respectively. Since both components
G(r ,t) can be determined independently through the p
ticles trajectories, then both components ofF(k,t) can also
be determined independently. Figure 7 shows the self-pa
G(r ,t) vs r at short times~symbols! for the system with
fa50.38. As one can see here, it is a very narrow funct
of r and we have only few experimental data points defin
this function. Thus, the determination ofFs(k,t) from a di-
rect Fourier transformation of the experimental data might
somewhat inaccurate. Figure 7 shows also a compariso
the measuredGs(r ,t) with Gaussian functionsPg(r ,t)
~dashed lines!, constructed from the measuredW(t). As one
can see here, the experimental data are very well represe
by Pg(r ,t). Thus, in order to avoid inaccuracies in the det
mination ofF(k,t), we proceeded in the following way fo

FIG. 8. Effective dynamic structure factorF(k,t) vs k at differ-
ent times.F(k,t) is a decaying function of time, and the decay ra
is increasingly faster for larger values of the wave vector.
6-6
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short times (t,0.5 s!. The distinct partFd(k,t) is obtained
by Fourier transforming the measuredGd(r ,t), and for
Fs(k,t) we use the Fourier transform of thePg(r ,t), i.e.,
Fs(k,t)5exp@2k2W(t)#.

Figure 8 shows the results forF(k,t) vs k, at different
times, for a system withfa50.38. F(k,0)5S(k) is the ef-
fective 2D static structure factor, the wave vector space a
log of g(r ). For this particle concentration,S(k) is a highly
structured function of the wave vectork, exhibiting several
well defined maxima and minima. Fort.0, the curve of
F(k,t) vs k decreases with time and the decay rate is incre
ingly faster for larger values of the wave vector. Furth
more, the initial decay ofF(k,t) vs t is exponential, as it is
shown below. Thus, the overall behavior ofF(k,t), shown in
Fig. 8, is qualitatively similar to the general behavior of t
dynamic structure factor of homogeneous 3D systems. T
in analogy to Eq.~3.7!, we define here the effective 2D hy
drodynamic functionH(k) as the initial slope of the function
f (k,t)52k22S(k)ln@F(k,t)/S(k)#. Figure 9 showsf (k,t) vs
t, for the system in Fig. 8, for various values ofk. As it is
seen here, the initial time-evolution off (k,t) is indeed linear
@i.e., the initial decay ofF(k,t) is exponential# for a wide
range of values ofk. Then, we use the initialk-dependent
slope of f (k,t) to defineH(k). Figure 10 showsH(k)/Ds

s ,
i.e., the effective hydrodynamic function normalized with t
initial slope ofW(t), for four values offa . The structure of
H(k) shows that the HI contribute differently to the rela
ation of the particle fluctuations of different wavelength
and that the effect is larger for higher concentrations. O
can also see here that single particle motion, characterize
Ds

s ~which depends only onfa but not onk), serves as a
reference to the collective motion described byH(k), and
that in the limit of largek H(k)→Ds

s . Deviations ofH(k)
from Ds

s are due to the fact that collective motion is not ju
a superposition of the individual motion of the particles, e
cept at values ofk whereH(k)5Ds

s . Although in our case
the HI between particles are combined with the hydro
namic effects from the walls, it is interesting to see that
effective H(k) measured in our systems resembles the

FIG. 9. f (k,t) vs t ~symbols! for various values ofk. The initial
slope~lines! defines the effective 2D hydrodynamic functionH(k).
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drodynamic functionH(k) measured in 3D suspensions
hard spheres@16#. Although there is not a simple correspo
dence between quasi-two-dimensional and 3D systems,
observation suggests that, perhaps, the main effect from
walls can be accounted for by the value ofDs

s @the large-k
limit of H(k)].

E. Self-diffusion versus collective diffusion

Dynamic light scattering~DLS! experiments in 3D sus
pensions measure the corresponding~3D! F(k,t), i.e., the 3D
collective dynamics of the particles. Self-diffusion dynami
is obtained only at large wave vectors whereF(k,t)
5Fs(k,t). The distinct part ofF(k,t) vanishes in this limit,
since it is the configuration average of a phase factor
oscillates very rapidly withk. However, at large values ofk
the correlation function decays very fast, and only the sh
time regime ofFs(k,t) is obtained by DLS. Thus, in order t
have access to self-diffusion dynamics at larger times@i.e., to
Fs(k,t) at lowerk], one has to resort to the assumption th
F(k,t)5Fs(k,t) at values ofk5ki where S(ki)51. This
assumption is actually equivalent to the assumption t
Fd(ki ,t)50. As discussed in Sec. III D, an important adva
tage of our experiments is that we can determine the self-
and the distinct part of the effective 2D correlation functio
independently in the real space. Then, we can determine
self- and distinct-correlation functions in the reciprocal spa
in the whole range of wave vectors. Thus, we can quan
the relative contributions ofFs(k,t) andFd(k,t) to the total
correlation functionF(k,t) for any value ofk, particularly
for k5ki . As discussed above, the self-part isFs(k,t)
5exp@2k2W(t)#. Thus, let us show the results for the distin
part. Figure 11 shows the effective 2DFd(k,t) vs k, at dif-
ferent times, measured in the system withfa50.38. One can
appreciate here the time and wavelength dependence o
correlation function between different particles~dots with
lines!. One can also see here that the distinct part ofF(k,t)
decays faster for larger values ofk and it vanishes in the

FIG. 10. Effective 2D hydrodynamic function, normalized wi
the 2D short-time self-diffusion coefficient, for various conce
trated systems.
6-7
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large wave-vector limit@the behavior ofFd(k,t) is similar to
its 3D counterpart#. The open circles represent the valueski
whereS(ki)51. This figure shows thatFd(ki ,t) is vanishing
small in the neighborhood ofk5ki . Thus, in our quasi-two-
dimensional systems one can conclude thatF(ki ,t)
5Fs(ki ,t). This is an important result that can be use
concerning measurements by light scattering technique
3D systems, i.e., it provides experimental support for
assumption that one can measure self-diffusion at wave
tors where the static structure factor equals 1.

IV. CONCLUSIONS

The dynamic properties of colloidal particles confined b
tween two parallel walls was studied by digital video micro

FIG. 11. Time correlation function between different particl
Fd(k,t) vs k at different times~dots with lines!. Open circles are the
valueski of the wave vector whereS(k)51. One can see here tha
Fd(ki ,t)50 for t>0.
v.
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e
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copy. The particles form a single layer between the wa
and execute essentially a 2D motion. However, the susp
ing fluid is not restricted to move only along the plane
motion of the particles; it flows in all directions, couplin
~hydrodynamically! the particles motion to the walls. Thu
the system is not 2D, but quasi-2D. The particles dynamic
described in terms of quantities,G(r ,t), F(k,t), and their
self-components and distinct components, defined and m
sured here as if the systems were strictly 2D, but which
in reality quasi-2D. We found that these quantities behav
a very similar way as their 3D counterparts. We also rep
measurements of an effective quantity describing the eff
of the hydrodynamic interactions~particle-particle and
particle-walls! in quasi-two-dimensional geometries, name
the effective hydrodynamic functionH(k), defined by the
initial slope of the effectiveF(k,t). Interestingly, the quan
tity H(k) measured here exhibits the same general feat
of the hydrodynamic function of 3D suspensions of ha
spheres. In summary, the results reported here are an im
tant step in understanding the dynamic properties of confi
colloidal particles and in particular the role of the HI in r
stricted geometries, and can serve as a guide for theore
and computer simulation studies of these phenomena. A
additional result, we show that in our systems the part
fluctuations relax only by self-diffusion at wave vecto
whereS(k)51. This result is important for the interpretatio
of measurements of colloidal dynamics by light scatter
techniques.
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